Identification of Sumoylation Activating Enzyme 1 Inhibitors by Structure-Based Virtual Screening

نویسندگان

  • Ashutosh Kumar
  • Akihiro Ito
  • Mikako Hirohama
  • Minoru Yoshida
  • Kam Y. J. Zhang
چکیده

SUMO activating enzyme 1 (SUMO E1) is responsible for the activation of SUMO in the first step of the sumoylation cascade. SUMO E1 is linked to many human diseases including cancer, thus making it a potential therapeutic target. There are few reported SUMO E1 inhibitors including several natural products. To identify small molecule inhibitors of SUMO E1 with better drug-like properties for potential therapeutic studies, we have used structure-based virtual screening to identify hits from the Maybridge small molecule library for biological assay. Our virtual screening protocol involves fast docking of the entire small molecule library with rigid protein and ligands followed by redocking of top hits using a method that incorporates both ligand and protein flexibility. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based binding free energy calculation. Out of 24 compounds that were acquired and tested using in vitro sumoylation assay, four of them showed more than 85% inhibition of sumoylation with the most active compound showing an IC50 of 14.4 μM. A similarity search with the most active compound in the ZINC database has identified three more compounds with improved potency. These compounds share a common phenyl urea scaffold and have been confirmed to inhibit SUMO E1 by in vitro SUMO-1 thioester bond formation assay. Our study suggests that these phenyl urea compounds could be used as a starting point for the development of novel therapeutic agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of SUMO activating enzyme 1 inhibitors utilizing virtual screening approach

Sumoylation is a post-translational modification affecting diverse cellular processes including DNA replication and repair, chromosome packing and dynamics, genome integrity, nuclear transport, signal transduction and cell proliferation [1]. Sumoylation involves the covalent attachment of a small ubiquitin like modifier (SUMO) protein to ε-amino group of lysine residues in specific target prote...

متن کامل

Identification of quinazolinyloxy biaryl urea as a new class of SUMO activating enzyme 1 inhibitors.

SUMO activating enzyme 1 (SUMO E1) is the first enzyme in sumoylation pathway and an important cancer drug target. However, only a few inhibitors were reported up to now that includes three natural products, semi-synthetic protein inhibitors and one AMP mimic. Here, we report the identification of quinazolinyloxy biaryl urea as a new class of SUMO E1 inhibitors. The most active compound of this...

متن کامل

Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors

Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma andchronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known toreduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. Thismakes the development of PDE4B subtype selective inhibitors a desirable research goal. Toachieve this goal, ligand based pharmacophore m...

متن کامل

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors

Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma andchronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known toreduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. Thismakes the development of PDE4B subtype selective inhibitors a desirable research goal. Toachieve this goal, ligand based pharmacophore m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 53 4  شماره 

صفحات  -

تاریخ انتشار 2013